1,242 research outputs found

    Spanning trees of 3-uniform hypergraphs

    Full text link
    Masbaum and Vaintrob's "Pfaffian matrix tree theorem" implies that counting spanning trees of a 3-uniform hypergraph (abbreviated to 3-graph) can be done in polynomial time for a class of "3-Pfaffian" 3-graphs, comparable to and related to the class of Pfaffian graphs. We prove a complexity result for recognizing a 3-Pfaffian 3-graph and describe two large classes of 3-Pfaffian 3-graphs -- one of these is given by a forbidden subgraph characterization analogous to Little's for bipartite Pfaffian graphs, and the other consists of a class of partial Steiner triple systems for which the property of being 3-Pfaffian can be reduced to the property of an associated graph being Pfaffian. We exhibit an infinite set of partial Steiner triple systems that are not 3-Pfaffian, none of which can be reduced to any other by deletion or contraction of triples. We also find some necessary or sufficient conditions for the existence of a spanning tree of a 3-graph (much more succinct than can be obtained by the currently fastest polynomial-time algorithm of Gabow and Stallmann for finding a spanning tree) and a superexponential lower bound on the number of spanning trees of a Steiner triple system.Comment: 34 pages, 9 figure

    A solution to the tennis ball problem

    Get PDF
    We present a complete solution to the so-called tennis ball problem, which is equivalent to counting lattice paths in the plane that use North and East steps and lie between certain boundaries. The solution takes the form of explicit expressions for the corresponding generating functions. Our method is based on the properties of Tutte polynomials of matroids associated to lattice paths. We also show how the same method provides a solution to a wide generalization of the problem.Comment: 9 pages, Late

    Representation of Numerical Semigroups by Dyck Paths

    Full text link
    We introduce square diagrams that represent numerical semigroups and we obtain an injection from the set of numerical semigroups into the set of Dyck paths.Comment: Short not

    The Lattice of Cyclic Flats of a Matroid

    Full text link
    A flat of a matroid is cyclic if it is a union of circuits. The cyclic flats of a matroid form a lattice under inclusion. We study these lattices and explore matroids from the perspective of cyclic flats. In particular, we show that every lattice is isomorphic to the lattice of cyclic flats of a matroid. We give a necessary and sufficient condition for a lattice Z of sets and a function r on Z to be the lattice of cyclic flats of a matroid and the restriction of the corresponding rank function to Z. We define cyclic width and show that this concept gives rise to minor-closed, dual-closed classes of matroids, two of which contain only transversal matroids.Comment: 15 pages, 1 figure. The new version addresses earlier work by Julie Sims that the authors learned of after submitting the first versio

    Lattice path matroids: enumerative aspects and Tutte polynomials

    Get PDF
    Fix two lattice paths P and Q from (0,0) to (m,r) that use East and North steps with P never going above Q. We show that the lattice paths that go from (0,0) to (m,r) and that remain in the region bounded by P and Q can be identified with the bases of a particular type of transversal matroid, which we call a lattice path matroid. We consider a variety of enumerative aspects of these matroids and we study three important matroid invariants, namely the Tutte polynomial and, for special types of lattice path matroids, the characteristic polynomial and the beta invariant. In particular, we show that the Tutte polynomial is the generating function for two basic lattice path statistics and we show that certain sequences of lattice path matroids give rise to sequences of Tutte polynomials for which there are relatively simple generating functions. We show that Tutte polynomials of lattice path matroids can be computed in polynomial time. Also, we obtain a new result about lattice paths from an analysis of the beta invariant of certain lattice path matroids.Comment: 28 pages, 11 figure
    • …
    corecore